3.3.86 \(\int \frac {1}{\sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx\) [286]

Optimal. Leaf size=83 \[ -\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {2} \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d}+\frac {2 \sin (c+d x)}{d \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}} \]

[Out]

-arctanh(1/2*sin(d*x+c)*2^(1/2)/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2))*2^(1/2)/d+2*sin(d*x+c)/d/(1-cos(d*x+c))
^(1/2)/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2858, 2861, 212} \begin {gather*} \frac {2 \sin (c+d x)}{d \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {2} \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[1 - Cos[c + d*x]]*Cos[c + d*x]^(3/2)),x]

[Out]

-((Sqrt[2]*ArcTanh[Sin[c + d*x]/(Sqrt[2]*Sqrt[1 - Cos[c + d*x]]*Sqrt[Cos[c + d*x]])])/d) + (2*Sin[c + d*x])/(d
*Sqrt[1 - Cos[c + d*x]]*Sqrt[Cos[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2858

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] - Dist[
1/(2*b*(n + 1)*(c^2 - d^2)), Int[(c + d*Sin[e + f*x])^(n + 1)*(Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e
+ f*x], x]/Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
 b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)} \, dx &=\frac {2 \sin (c+d x)}{d \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}+\int \frac {1}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 \sin (c+d x)}{d \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}-\frac {2 \text {Subst}\left (\int \frac {1}{2-x^2} \, dx,x,\frac {\sin (c+d x)}{\sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d}\\ &=-\frac {\sqrt {2} \tanh ^{-1}\left (\frac {\sin (c+d x)}{\sqrt {2} \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\right )}{d}+\frac {2 \sin (c+d x)}{d \sqrt {1-\cos (c+d x)} \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.15, size = 152, normalized size = 1.83 \begin {gather*} \frac {2 \left (-\frac {e^{-\frac {1}{2} i (c+d x)} \left (1+e^{2 i (c+d x)}\right ) \tanh ^{-1}\left (\frac {1+e^{i (c+d x)}}{\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}}\right )}{\sqrt {2}}+2 \sqrt {1+e^{2 i (c+d x)}} \cos \left (\frac {1}{2} (c+d x)\right )\right ) \sin \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {1+e^{2 i (c+d x)}} \sqrt {-((-1+\cos (c+d x)) \cos (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[1 - Cos[c + d*x]]*Cos[c + d*x]^(3/2)),x]

[Out]

(2*(-(((1 + E^((2*I)*(c + d*x)))*ArcTanh[(1 + E^(I*(c + d*x)))/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])])/(Sqrt
[2]*E^((I/2)*(c + d*x)))) + 2*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[(c + d*x)/2])*Sin[(c + d*x)/2])/(d*Sqrt[1 + E^
((2*I)*(c + d*x))]*Sqrt[-((-1 + Cos[c + d*x])*Cos[c + d*x])])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(158\) vs. \(2(72)=144\).
time = 0.16, size = 159, normalized size = 1.92

method result size
default \(\frac {\left (\sin ^{3}\left (d x +c \right )\right ) \left (\sqrt {2}\, \cos \left (d x +c \right ) \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {2}}{2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+\sqrt {2}\, \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \arctanh \left (\frac {\sqrt {2}}{2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )-2 \cos \left (d x +c \right )\right ) \sqrt {2}}{d \sqrt {2-2 \cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{\frac {3}{2}} \left (\cos ^{2}\left (d x +c \right )-1\right )}\) \(159\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/d*sin(d*x+c)^3*(2^(1/2)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arctanh(1/2*2^(1/2)/(cos(d*x+c)/(1+cos(
d*x+c)))^(1/2))+2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*arctanh(1/2*2^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2
))-2*cos(d*x+c))/(2-2*cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2)/(cos(d*x+c)^2-1)*2^(1/2)

________________________________________________________________________________________

Maxima [C] Result contains complex when optimal does not.
time = 0.60, size = 400, normalized size = 4.82 \begin {gather*} -\frac {\sqrt {2} {\left (2 \, \sqrt {2} \sin \left (d x + c\right ) \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) + 2 \, {\left (\sqrt {2} \cos \left (d x + c\right ) + \sqrt {2}\right )} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \log \left (\frac {4 \, {\left ({\left | i \, e^{\left (i \, d x + i \, c\right )} - i \right |}^{2} + 2 \, \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} {\left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )^{2}\right )} - 2 \, {\left (\sqrt {2} {\left | i \, e^{\left (i \, d x + i \, c\right )} - i \right |} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right )\right )} {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} + 4\right )}}{{\left | i \, e^{\left (i \, d x + i \, c\right )} - i \right |}^{2}}\right )\right )}}{2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

-1/2*sqrt(2)*(2*sqrt(2)*sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 2*(sqrt(2)*cos
(d*x + c) + sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - (cos(2*d*x + 2*c)^2 + sin(2*d*
x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*log(4*(abs(I*e^(I*d*x + I*c) - I)^2 + 2*sqrt(cos(2*d*x + 2*c)^2 + s
in(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sin(
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2) - 2*(sqrt(2)*abs(I*e^(I*d*x + I*c) - I)*sin(1/2*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 2*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)
))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4) + 4)/abs(I*e^(I*d*x + I*c) - I)^2)
)/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*d)

________________________________________________________________________________________

Fricas [A]
time = 0.42, size = 144, normalized size = 1.73 \begin {gather*} \frac {\sqrt {2} \cos \left (d x + c\right ) \log \left (-\frac {2 \, {\left (\sqrt {2} \cos \left (d x + c\right ) + \sqrt {2}\right )} \sqrt {-\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )} - {\left (3 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )}{{\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) + 4 \, {\left (\cos \left (d x + c\right ) + 1\right )} \sqrt {-\cos \left (d x + c\right ) + 1} \sqrt {\cos \left (d x + c\right )}}{2 \, d \cos \left (d x + c\right ) \sin \left (d x + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*cos(d*x + c)*log(-(2*(sqrt(2)*cos(d*x + c) + sqrt(2))*sqrt(-cos(d*x + c) + 1)*sqrt(cos(d*x + c))
- (3*cos(d*x + c) + 1)*sin(d*x + c))/((cos(d*x + c) - 1)*sin(d*x + c)))*sin(d*x + c) + 4*(cos(d*x + c) + 1)*sq
rt(-cos(d*x + c) + 1)*sqrt(cos(d*x + c)))/(d*cos(d*x + c)*sin(d*x + c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {1 - \cos {\left (c + d x \right )}} \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-cos(d*x+c))**(1/2)/cos(d*x+c)**(3/2),x)

[Out]

Integral(1/(sqrt(1 - cos(c + d*x))*cos(c + d*x)**(3/2)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 264 vs. \(2 (72) = 144\).
time = 0.65, size = 264, normalized size = 3.18 \begin {gather*} -\frac {\frac {4 \, {\left (\frac {\sqrt {2} \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2}}{\mathrm {sgn}\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {\sqrt {2}}{\mathrm {sgn}\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}\right )}}{\sqrt {\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{4} - 6 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 1}} - \frac {\sqrt {2} \log \left (\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} - \sqrt {\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{4} - 6 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 1} + 1\right )}{\mathrm {sgn}\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {\sqrt {2} \log \left ({\left | -\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + \sqrt {\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{4} - 6 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 1} + 3 \right |}\right )}{\mathrm {sgn}\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {\sqrt {2} \log \left ({\left | -\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + \sqrt {\tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{4} - 6 \, \tan \left (\frac {1}{4} \, d x + \frac {1}{4} \, c\right )^{2} + 1} + 1 \right |}\right )}{\mathrm {sgn}\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-cos(d*x+c))^(1/2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

-1/2*(4*(sqrt(2)*tan(1/4*d*x + 1/4*c)^2/sgn(sin(1/2*d*x + 1/2*c)) - sqrt(2)/sgn(sin(1/2*d*x + 1/2*c)))/sqrt(ta
n(1/4*d*x + 1/4*c)^4 - 6*tan(1/4*d*x + 1/4*c)^2 + 1) - sqrt(2)*log(tan(1/4*d*x + 1/4*c)^2 - sqrt(tan(1/4*d*x +
 1/4*c)^4 - 6*tan(1/4*d*x + 1/4*c)^2 + 1) + 1)/sgn(sin(1/2*d*x + 1/2*c)) + sqrt(2)*log(abs(-tan(1/4*d*x + 1/4*
c)^2 + sqrt(tan(1/4*d*x + 1/4*c)^4 - 6*tan(1/4*d*x + 1/4*c)^2 + 1) + 3))/sgn(sin(1/2*d*x + 1/2*c)) + sqrt(2)*l
og(abs(-tan(1/4*d*x + 1/4*c)^2 + sqrt(tan(1/4*d*x + 1/4*c)^4 - 6*tan(1/4*d*x + 1/4*c)^2 + 1) + 1))/sgn(sin(1/2
*d*x + 1/2*c)))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {1-\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(3/2)*(1 - cos(c + d*x))^(1/2)),x)

[Out]

int(1/(cos(c + d*x)^(3/2)*(1 - cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________